DeepPurpose: a deep learning library for drug–target interaction prediction
نویسندگان
چکیده
منابع مشابه
ZhuSuan: A Library for Bayesian Deep Learning
In this paper we introduce ZhuSuan, a python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and deep learning. ZhuSuan is built upon Tensorflow. Unlike existing deep learning libraries, which are mainly designed for deterministic neural networks and supervised tasks, ZhuSuan is featured for its deep root into Bayesia...
متن کاملMultimodal Deep Learning Library
The Neural Network is a directed graph consists of multiple layers of neurons, which is also referred to as units. In general there is no connection between units of the same layer and there are only connections between adjacent layers. The first layer is the input and is referred to as visible layer v. Above the visible layer there are multiple hidden layers {h1, h2, ..., hn}. And the output o...
متن کاملProtein-protein interaction contact matrix prediction with deep learning
Deep learning has emerged as a new area of machine learning research. It has been successfully applied to several fields such as images, sounds, text and motion. In this project, deep learning was applied to protein interaction prediction and compared with support vector machines. Deep learning was shown to have a good performance as well as SVM with Fisher score features.
متن کاملInteraction prediction in structure-based virtual screening using deep learning.
We introduce a deep learning architecture for structure-based virtual screening that generates fixed-sized fingerprints of proteins and small molecules by applying learnable atom convolution and softmax operations to each molecule separately. These fingerprints are further non-linearly transformed, their inner product is calculated and used to predict the binding potential. Moreover, we show th...
متن کاملUser-serp Interaction Prediction through Deep Multi-task Learning
User behavior signals such as clicks are strong indicators of a search engines performance. Many existing search algorithms focus on predicting users interactions, by optimizing a relevance cost function for the query and individual web documents. The result set (list) is then generated by ranking web documents with this score. However, the probability of user interaction with a web document on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2020
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btaa1005